Do Intelligent Robots Need Emotion?

What's your opinion?

Natural Language Processing and Information Retrieval

.

ABSTRACT:

Information retrieval addresses the problem of finding those documents whose content matches a user's request from among a large collection of documents. Currently, the most successful general purpose retrieval methods are statistical methods that treat text as little more than a bag of words. However, attempts to improve retrieval performance through more sophisticated linguistic processing have been largely unsuccessful. Indeed, unless done carefully, such processing can degrade retrieval effectiveness.

Several factors contribute to the difficulty of improving on a good statistical baseline including: the forgiving nature but broad coverage of the typical retrieval task; the lack of good weighting schemes for compound index terms; and the implicit linguistic processing inherent in the statistical methods. Natural language processing techniques may be more important for related tasks such as question answering or document summarization.

References:

  1. Sparck Jones, K., Willett, P. (eds.): Readings in Information Retrieval. Morgan Kaufmann, San Franciso (1997). Google Scholar
  2. Salton, G. Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Communications of the ACM. 18 (1975) 613-620. Google Scholar
  3. Sparck Jones, K.: Further Reflections on TREC. Information Processing and Management. (To appear). Google Scholar
  4. Sparck Jones, K.: What is the Role of NLP in Text Retrieval? In: Strzalkowski, T. (ed.): Natural Language Information Retrieval. Kluwer (In press).Google Scholar
  5. Perez-Carballo, J., Strzalkowski, T.: Natural Language Information Retrieval: Progress Report. Information Processing and Mangement. (To appear). Google Scholar
  6. D'Amore, R.J., Mah, C.P.: One-Time complete Indexing of Text: Theory and Practice. Proceedings of the Eighth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press (1985) 155-164. Google Scholar
  7. Cormack, G.V., Clarke, C.L.A., Palmer, C.R., To, S.S.L.: Passage-Based Query Refinement. Information Processing and Management. (To appear).Google Scholar
  8. Strzalkowski, T.: NLP Track at TREC-5. Proceedings of the Fifth Text REtrieval Conference (TREC-5). NIST Special Publication 500-238 (1997), 97-101. Also at http://trec.nist.gov/pubs.htmlGoogle Scholar
  9. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998).Google Scholar
  10. Voorhees, E.M.: Using WordNet to Disambiguate Word Senses for Text Retrieval. Proceedings of the Sixteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press (1993) 171-180. Google Scholar
  11. Voorhees, E.M.: Using WordNet for Text Retrieval. In: Fellbaum, C. (ed.): Word-Net: An Electronic Lexical Database. MIT Press (1998) 285-303.Google Scholar
  12. Rau, L.F.: Conceptual Information Extraction and Retrieval from Natural Language Input. In: Sparck Jones, K., Willett, P. (eds.): Readings in Information Retrieval. Morgan Kaufmann, San Franciso (1997) 527-533. Google Scholar
  13. Mauldin, M.L.: Retrieval Performance in FERRET. Proceedings of the Fourteenth Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval. ACM Press (1991) 347-355. Google Scholar
  14. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science. 41 (1990) 391-407.Google Scholar
  15. Fox, E.A.: Extending the Boolean and Vector Space Models of Information Retrieval with P-Norm Queries and Multiple Concept Types. Unpublished doctoral dissertation, Cornell University, Ithaca, NY. University Microfilms, Ann Arbor, MI. Google Scholar
  16. Sanderson, M.: Word Sense Disambiguation and Information Retrieval. Proceedings of the Seventeenth Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval. Springer-Verlag (1994) 142-151. Google Scholar
  17. Krovetz, R., Croft, W.B.: Lexical Ambiguity in Information Retrieval. ACM Transactions on Information Systems. 10 (1992) 115-141. Google Scholar
  18. Leacock, C., Towell, G., Voorhees, E.M.: Towards Building Contextual Representations of Word Senses Using Statistical Models. In: Boguraev, B., Pustejovsky, J. (eds.): Corpus Processing for Lexical Acquisition. MIT Press (1996) 98-113. Google Scholar
  19. Paik, W., Liddy, E.D., Yu, E., Mckenna, M.: Categorizing and Standardizing Proper Nouns for Efficient Information Retrieval. In: Boguraev, B., Pustejovsky, J. (eds.): Corpus Processing for Lexical Acquisition. MIT Press (1996) 61-73. Google Scholar
  20. Burger, J.D., Aberdeen, J.S., Palmer, D.D.: Information Retrieval and Trainable Natural Language Processing. Proceedings of the Fifth Text REtrieval Conference (TREC-5). NIST Special Publication 500-238 (1997), 433-435. Also at http://trec.nist.gov/pubs.htmlGoogle Scholar
  21. Hull, D.A., Grefenstette, G., Schulze, B.M., Gaussier, E., Schütze, H., Pedersen, J.O.: Xerox TREC-5 Site Report: Routing, Filtering, NLP, and Spanish Tracks. Proceedings of the Fifth Text REtrieval Conference (TREC-5). NIST Special Publication 500-238 (1997), 167-180. Also at http://trec.nist.gov/pubs.htmlGoogle Scholar
  22. Zhai, C., Tong, X., Milic-Frayling, N., Evans, D.A.: Evaluation of Syntactic Phrase Indexing--CLARIT NLP Track Report. Proceedings of the Fifth Text REtrieval Conference (TREC-5). NIST Special Publication 500-238 (1997), 347-357. Also at http://trec.nist.gov/pubs.htmlGoogle Scholar
  23. Strzalkowski, T., Guthrie, L., Karlgren, J., Leistensnider, J., Lin, F., Perez-Carballo, J., Straszheim, T., Wang, J., Wilding, J.: Natural Language Information Retrieval: TREC-5 Report. Proceedings of the Fifth Text REtrieval Conference (TREC-5). NIST Special Publication 500-238 (1997), 291-313. Also at http://trec.nist.gov/pubs.html Google Scholar
  24. Taghva, K., Borsack, J., Condit, A.: Results of Applying Probabilistic IR to OCR Text. Proceedings of the Seventeenth Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval. Springer-Verlag, (1994) 202-211. Google Scholar
  25. Kantor, P.B., Voorhees, E.M.: Report on the TREC-5 Confusion Track. Proceedings of the Fifth Text REtrieval Conference (TREC-5). NIST Special Publication 500-238 (1997), 65-74. Also at http://trec.nist.gov/pubs.htmlGoogle Scholar
  26. Garofolo, J., Voorhees, E.M., Auzanne, C.G.P., Stanford, V.M., Lund, B.A.: 1998 TREC-7 Spoken Document Retrieval Track Overview and Results. Proceedings of the Seventh Text REtrieval Conference (TREC-7). (In press.) Also at http://trec.nist.gov/pubs.htmlGoogle Scholar
  27. Buckley, C., Mitra M., Walz, J., Cardie, C.: Using Clustering and SuperConcepts Within SMART: TREC 6. Proceedings of the Sixth Text REtrieval Conference (TREC-6). NIST Special Publication 500-240 (1998), 107-124. Also at http://trec.nist.gov/pubs.htmlGoogle Scholar
  28. Mani, I., House, D., Klein, G., Hirschman, L., Obrst, L., Firmin, T., Chrzanowski, M., Sundheim, B.: The TIPSTER SUMMAC Text Summarization Evaluation Final Report. MITRE Technical Report MTR 98W0000138. McLean, Virginia (1998). Also at http://www.nist.gov/itl/div894/894.02/related_projects/tipster_summac/ final_rpt.htmlGoogle Scholar

.

https://dl.acm.org/doi/10.5555/645857.669935


Read More